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ABSTRACT 
Chlorpyrifos [O, O-diethyl O-(3, 5, 6-trichloro-2-pyridinyl) phosphorothioate), which causes lung dysfunction, was used in this 
investigation to see if mesenchymal stem cells (MSCs) or l-2-oxothiazolidine-4-carboxylate (OTC) could alleviate the symptoms 
(CPF). Six sets of male albino rats (12010g) were formed. H2O was administered as a control, whereas OTC was administered 
orally at a dose of 100mg/kg b.wt./day and CPF was administered orally at a dose of 17.5mg/kg. It is possible to combine the 
use of one intravenous injection of MSCs (a single dose of 2106 cells) with the use of CPF+OTC, CPF+MSCS, or even 
CPF+MSCS+MSCS (CPF co-treated with OTC and MSCs). Results after a month demonstrated that treatment with OTC or/and 
MSCs improved GPx, MDA, and TAC in glutathione peroxidase (TAC). Lung tissue organisation was recovered by H&E after 
treatment with OTC and/or MSCs. As a result, it's possible that OTC and MSCs work in concert to help protect lung tissue 
against the apoptotic effects of CPF. 
Keywords: MSCs; p53/Caspase-3-mediated apoptosis; OTC; Lung. 

 

INTRODUCTION 
Lung dysfunction is a critical cause of mortality (Caley et al., 2021) 
even in non-smokers, with low lung function being a concern of 
reduced growth in utero, childhood and failure in adult life (Kung et 
al., 2021). Lung dysfunctions in adults may be caused by 
anatomical, physiological or immunological age-related changes as 
well as lung was influenced by genetics or/and environmental 
exposures as smoking and other air pollutions (Kling & William. 
2021).  
 Pesticide use has increased recently, causing major 
problems such as reproductive dysfunction in lab animals or 
people, endocrine disorders, immunological alarms, neurologic 
syndromes, and kidney or liver impairments. Acute pesticide 
exposure causes bronchospasm, respiratory failure, and even 
death (Tan, 2021; Peiris et al., 2017; Darwiche et al., 2018, and 
Gadah et al., 2019). 
 Numerous studies have shown that supplementing stem 
cells with antioxidants improves their ability to resist oxidative 
stress and thus the overall therapeutic result of their implantation 
(Ashfaq et al., 2020). The experimental evidence also supports the 
role of antioxidants in regulating stem cells and increasing their 
proliferative capability (Stavely and Nurgali, 2020). Plant extracts 
and known antioxidants like ascorbic acid and resveratrol have 
been studied for their ability to stimulate stem cell proliferation 
(Kwon and Park, 2020). The ongoing investigation may emphasise 
the role of redox balance in stem cell regulation. 
 Adult stem cells can self-renew and differentiate into many 
lineages (Li, Y et al., 2020 and Bhatti et al., 2018). In specific 
experimental and physiological circumstances, MSCs develop into 
ligaments, tendon, bone, cartilage, muscle, and adipose tissue 
(Young et al., 2020 and Karamini et al., 2020). MSCs also release 
extracellular vesicles (EVs), including exosomes, which promote 
regeneration processes in several disease scenarios. Exosomes 
from MSCs have therapeutic characteristics similar to parent 
MSCs. The substantial therapeutic effects of MSCs on COVID-19 
patients are mediated through regulation of the immune response 
(Florindo et al., 2020; Gupta et al., 2020). 
 Thus, the current work attempted to assess the effect of 
MSCs or OTC on p53 and then restore histological characteristics 
in a CPF-induced lung toxicity rat model. 
 

MATERIALS & METHODS 
OTC and CPF were acquired from Sigma Chemical Company (St. 
Louis, U.S.A). The National Research Center in Cairo contributed 
48 male albino rats (bwt 12010g). The rat caged All rats were fed 
and watered two weeks before the test. The National Research 

Center's animal facilities followed all ethical guidelines. Its animal 
welfare committee approved all study animals (13/165). 
Induction of pulmonary toxicity: The pulmonary toxicity model 
was induced by Chlorpyrifos administered orally to male rats 
17.5mg/kg one month (Peiris and Dhanushka 2017). 
Preparation of bone marrow-derived MSCs: The bone marrow 
of 6-week-old male albino rats was extracted after flushing with 
DMEM (GIBCO/BRL) and adding 10% foetal bovine serum to the 
tibiae and femurs. It was utilised to isolate nucleated cells, which 
were subsequently placed in complete culture media with 1% 
penicillin–streptomycin (GIBCO/BRL).  
Flow cytometry: The researchers used a Fluorescence Activated 
Cell Sorter (FACS) flow cytometer (Coulter Epics Elite, Miami, FL, 
USA). PBS washed twice with MSC. Each run utilised 1105 MSCs. 
The cells were maintained in 100 l PBS with 3 l for 20 minutes. 
Each litre of blood had 0.1 mg mL-1 antibody. After resuspension, 
they were washed twice with PBS.  
Fluorescence Labeling of MSCs: It was employed in the Sigma 
technique to mark MSCs with PKH26 fluorescent dye (Saint Louis, 
Missouri USA). Serum free media was used to perform a double 
wash of the cells. The cells were then pelleted and dissolved in a 
dye solution and injected into the tail veins. (Marina et al., 2008). 
After 10 days, fluorescence microscopes were used to look for 
migrating labelled cells in lung sections (Mokbel et al., 2011). 
Experimental design: All rats were divided into two main groups 
GROUP A. 16 rats were divided into 2 groups (each of 8 rats): 
Group I: control group received distilled water. 
Group II: OTC group received oral dose of l-2-oxothiazolidine-4-
carboxylate (100mg/kg for one month) at the beginning of MSCs 
administration. 
Group B. 32 rats were received oral doses of Chlorpyrifos; 
CPF (17.5mg/kg for one month) and then divided into 4 equal 
CPF groups as following: 
Group III: CPF group left with no further treatment. 
Group IV: CPF group treated with OTC (100mg/kg for one month) 
(Choi et al., 2013). 
Group V: CPF group treated with MSCs (a single intravenous 
injection (2×106 cell) for one month). 
Group VI: CPF group treated with both MSCs companied with 
OTC. Lung tissue was dissected and placed on formalin for 
histological investigation 1 month after MSC injection. 1 gramme 
lung tissue homogenised Before biochemical tests, the 
homogenates were stored at -80°C.. 
Biochemical analysis: GPx activity assay was determined 
according to the method of Sies et al., (1979) and Almeida and 
Bainy (2006). MDA and TAC, and were assessed by commercial 
kits (Biodiagnostic Co., Egypt). p53 and Caspase-3 contents were 
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determined by ELISA technique using rat ELISA kit (Glory Science 
Co., Ltd, USA) according to the manufacturer's instruction.  
Histopathological examinations: Ten percent formalin solution 
(FFBE) blocks were made from lungs preserved in formalin 
solution. Histopathological sections of 3-micron thickness were 
stained with haematoxylin and eosin to examine changes (H&E). 
 

RESULTS 
Recognition and Characterization of MSCs: MSCs in culture 
were recognized morphologically as shown in. S1 (a,b,c, and d). 
Also, MSCs were characterized by surface markers expression of 
CD90 (+ve) and CD34 (-ve) detected by flow cytometry. (S 2). 
Homing of migrated MSCs: Labeled MSCs that had been 
migrating for 12 days had been found in lung tissue, and this was 
confirmed in lung sections treated with MSCs and OTC at the 
same time. S3.  
Biochemical analysis: Figure 1 shows data for tissue glutathione 
peroxidase (GPx), malondialdehyde (MDA), and total antioxidant 
capacity (TAC) concentration (4, 5 &6). 
 Throughout the trial, rats treated with OTC (GII) showed no 
significant alterations (p>0.05). However, the CPF group (GIII) had 
a substantial (p0.001) decrease in tissue GPx content 
(7.711.41mmol/mg) compared to the control group 
(68.373.17mmol/mg) (-88.72 percent change). Compared to CPF 
rats, the mean value (44.802.58mmol/mg) of the treatment group 
with OTC (GIV) increased significantly (p0.001) (481.06 percent 
change).  
 
Figure (1): 

 
A: The therapeutic role of OTC or/and MSCs on tissue glutathione 
peroxidase (GPx) (mmol/mg) of rats treated with CPF. 

 

 
B: The therapeutic role of OTC or/and MSCs on tissue malondialdehyde 
(MDA) (nmol/mg) of rats treated with CPF. 

 
C: The therapeutic role of OTC or/and MSCs on tissue total antioxidant 
capacity (TAC) content (mmol/mg) of rats treated with CPF 

 
Figure (2) 

 

 
(A): The therapeutic role of OTC or/and MSCs on tissue tumor suppressor 
protein p53 content (pg/mg) of rats treated with CPF. 

 

 
(B): The therapeutic role of OTC or/and MSCs on tissue cystein-aspartase 
proteases-3  (Caspase-3) content (pg/mg) of rats treated with CPF. 

 
a: When compared to comparable values in control groups (control and 
OTC), this difference is statistically significant. When compared to the CPF 
group, this difference is statistically significant. There are three levels of 
statistical significance: p 0.05, 0.01 and 0.001. Control, OTC, CPF, 
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CPF+OTC, MSCs, and CPF+OTC+MSCs groups are referred to as GI, GII, 
GII, GIII, GIV, and GVI. 

 

 
 
Istopathology: Microscopic examination of lung’s sections from 
the control rats showed the normal histological structure; in which 
the parenchyma is consisted of small air ways; bronchioles and air 
alveoli (Fig. 3a). The group received OTC alone displayed 
apparently normal lung tissue (Fig. 3b) with slight perivascular 
edema. 
 Administration of CPF resulted in serious histopathological 
changes in lung sections; peri-bronchial blood vessels were 
severely congested with hyperplasia in the bronchial related 
lymphoid tissue and peribronchial mononuclear cells infiltration 
(Fig. 3c).  
 OTC moderately improved the adverse effect of CPF on lung 
tissue, some of the examined sections seemed apparently normal 
lung tissue with minor scattered foci of interstitial pneumonia (Fig. 
3d). MSCs exerted the best action among the treated groups in 
maintaining lungs architecture (Fig. 3e). Mild perivascular edema 
and alveolar emphysema were detected in limited sections. 
 Co-administration of both OTC + MSCs also restricted the 
pulmonary destruction induced by CPF to some degree, some of 
the examined lung sections looked apparently normal with small 
focal areas of interstitial pneumonia (Fig. 3f).  
 

DISCUSSION 
Lung is the first organ of the body which comes into contact with 
toxic substances or chemicals inhaled through the air. 
Organophosphorus (OPs) insecticides have severe side effects in 
different organs, plus lung. OPs compounds cause cellular 
aggregation in the vascular walls or air spaces, immune cells 
infiltrations, hemorrhage, alveolar congestion, and 
emphysematous alterations, amongst other lung injuries (Yurumez 
et al 2007). CPF is a lipophilic OP that easily passes through cell 
membranes and causes significant damage according to previous 
research (Deb and Das, 2013 and Hassani et al., 2015).  
 Given our results, the OTC administration moderately 
returned the oxido-reductive balance that had been disturbed by 
CPF-induced irreversible deviations in antioxidant enzymes. This is 
in accordance with published suggestion that OTC increases GSH 
levels by providing a cellular cysteine source. Our findings also 
show that using OTC to advance tissue Gpx and reduce oxidative 

lung damage may be effective (Ilievska and Hadzi, 2015; Hadzi-
Petrushev et al., 2012; Hadzi-Petrushev et al., 2011). OTC was 
also found to raise cellular GSH and decrease destruction 
produced by free radicals formed by ionizing radiation when used 
in vitro. (Angelovski et al 2020). 
 According to Angelovski et al., 2020; Caspase-3 is an 
aspartate-specific cysteine protease that has been linked to 
mitochondrial apoptosis pathway. Also, p53 regulates cell cycle 
and controls Caspase-3 apoptosis pathway. More to the point, it 
was known that oxidative stress induce cell death through boosting 
of p53-Caspase-3 axis (Sritharan and Sivalingam, 2021). 
 This finding is consistent with (Angelovski et al., 2020), who 
suggested that the CYP450s/ROS pathway is complicated in 
atrazine-induced apoptosis. As previously reported, CPF toxicity 
had an impression on cell cycle and apoptosis, as well as 
neurotoxicity in SK-N-SH cells Bcl-2, Bax, Caspases. Moreover, 
CPF can inhibit Bcl-2 and increasing p53, caspase-9, and 
caspase-3, inducing apoptosis, in carpe gills (Zhang et al., 2019). 
 As a result, these findings indicated that OTC has an 
improvement role for lung injuries. After treatment with MSCs, 
Zhang et al., (2021) Ayala-Cuellar et al., (2019) and Kadry et al., 
(2018) found that apoptosis was reduced in pancreatic tissues of 
rats, and they attributed this to MSCs' ability to induce the growth 
of new islet of cells by using the transcription factor Sox9. MSCs 
have the ability to transdifferentiate and act as antiapoptotic player 
(Wu, Y et al., 2021; Holan et al., 2021). Homing of MSCs in lung 
tissues in these results (fig.3) may boost this expectation. 
 The concurrent histological findings show significant 
protective effects of OTC or/and MSCs in CPF-induced lung 
destruction in rats. Furthermore, OTC+MSCs in the therapeutic 
group (GVI) were found to be more effective in returning CPF-
induced histopathological alterations than in post treatment 
curative groups (GIV) and (GV).  
 As mentioned before, the biochemical analysis of lung tissue 
in this study showed elevation of TAC and GPx. So, the 
amelioration in histopathological features might be due to 
accelerated regeneration of lungs parenchyma under the influence 
of antioxidative effects of OTC, which increase intracellular 
concentrations of GSH above physiological concentrations. 
(Promsote et al., 2014; John and Arockiasamy 2021; Boese and 
Kang, 2021). Therefore, GSH and GSH-px modulation is 
progressively relevant in the treatment of oxidative stress-related 
diseases (Terziev et al., 2020).  
 

CONCLUSION 
Based on our results, it can be concluded that the treatment with 
OTC or MSCs alone or in combination may improve lung tissue of 
rats against CPF-induced disruption via reducing of oxidative 
stress and hence suppression of p53/caspase-3-mediated 
apoptosis.  
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