Study of Facial Nerve Function Following Retromandibular Open Reduction of Mandibular Condylar Fracture

MUHAMMAD AHSAN BHATTI, KAMAL MUHAMMAD MUSTAFA, MOHAMMAD UMAR, ATIF IQBAL BUTT, SADAF SHAMSHAD, RIDA ZULFIQAR

1MCPs Resident, Department of Oral and Maxillofacial Surgery, Bhatti Dental Clinic, Karachi
2FCPS Resident, Department of Oral and Maxillofacial Surgery, Abbasi Shaheed Hospital, Karachi
3Assistant Professor, Department of Oral and Maxillofacial surgery, Rawal Dental College, Rawalpindi
4Assistant Professor, Department of Oral and maxillofacial surgery, Ziauddin College of Dentistry, Karachi
5Oral and Maxillofacial Consultant, Sindh Govt Hospital Liaquatabad, Karachi
6Registrar, Department of Oral and Maxillofacial Surgery, Bahria University Medical and Dental College, Karachi

Correspondence to: ?????????????

ABSTRACT
At least 1/3rd (26–40%) of all mandibular fractures occur in the condylar region, making it one of the most common fracture sites. They can further lead to morphological & functional damage when undetected or poorly managed. Condylar fractures that are misdiagnosed or improperly treated can cause substantial functional impairment, such as malocclusion, decreased mouth opening due to jaw deviation, and restricted lateral mandibular motions.

Objectives: The aim of the study was to examine facial nerve function following retromandibular trans parotid ORIF for mandibular sub-condylar fractures.

Methodology: After receiving the necessary ethical approval, 50 patients who presented with unilateral condylar fractures, sub condylar fractures (36), & neck fractures (14) (Ellis classification) were chosen. All of the research participants, who underwent open reduction using a retromandibular technique, provided informed consent.

Results: All 50 patients were assessed and no patients were excluded. The healing went well, and no one experienced significant scarring or hardware infection. 7 (14%) individuals experienced transient buccal branch weakness, while 2 (4%) experienced transitory zygomatic branch dimness.

Keywords: Condylar fracture, Open reduction, Retromandibular approach, Anatomical reduction

INTRODUCTION
At least 1/3rd (26–40%) of all mandibular fractures occur in the condylar region, making it one of the most common fracture sites. They can further lead to morphological & functional damage when undetected or poorly managed. Condylar fractures that are misdiagnosed or improperly treated can cause substantial functional impairment, such as malocclusion, decreased mouth opening due to jaw deviation, and restricted lateral mandibular motions.

A commonly acknowledged form of therapy for mandibular condylar fractures is internal fixation & open reduction of the broken mandibular condyle, which routinely results in positive efficient results. The protection of the facial nerve is of the utmost significance & has been the subject of discussions for all of the time, which has impacted the selection of therapy (Open vs Closed). We chose the retromandibular trans-parotid approach because it provides an uninterrupted & straightforward approach to the mandibular sub-condylar area. Other approaches to condylar fracture have included those that are preauricular, submandibular, rhidectomy & even more recently, the transmassetic anterior parotid approach. Hinds and Gioritti published the first report on this strategy in 1967. The location of the incision also causes a hardly noticeable scar and has the extra benefit of providing enough exposure to the fractured site. Deprived of the requirement for inter maxillary fixation, rigid fixation & open reduction enable adequate anatomic reposisioning, repair of the ramal length, avoidance of long-term sequelae such as clicking & late arthritic alterations, and a quicker return to daily function.

The aim of the study was to examine facial nerve function following retromandibular trans parotid ORIF for mandibular sub-condylar fractures.

METHODOLOGY
After receiving the necessary ethical approval, 50 patients who presented with unilateral condylar fractures, sub condylar fractures (36), & neck fractures (14) (Ellis classification) were chosen. All of the research participants, who underwent open reduction using a retromandibular technique, provided informed consent.

Condylar neck and sub condylar area fractures in adult patients were considered. Bilateral instances were disregarded. A functional evaluation was conducted using the rule below (Table 1). No subject had any pre-existing circumstances that would have affected the facial nerve, and all patients’ facial nerve pre-op statuses were normal.

Table 1: Tests requested by the patient

<table>
<thead>
<tr>
<th>Expression/Movement</th>
<th>Branch measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raise and crinkle your forehead</td>
<td>Temporal branch</td>
</tr>
<tr>
<td>Puff cheeks, whistle, blow cheeks</td>
<td>Buccal branch</td>
</tr>
<tr>
<td>Closure of eyes</td>
<td>Zygomatic branch</td>
</tr>
<tr>
<td>Everted lower lip, move lower lip</td>
<td>Marginal mandibularis</td>
</tr>
</tbody>
</table>

One surgeon performed the surgeries on each and every patient. After palpating the ear lobe, a vertical incision was made about 0.5 cm below it, parallel to the mandibular posterior boundary. To assist in closure and to make retraction easier, skin and subcutaneous tissue were compromised (Figure 1). With the use of bipolar cautery, scart platysma was incised to reveal the parotid fascia. To help in the closure, the parotid fascia was meticulously incised & both culminations of this layer were marked with vicryl 4-0. The posterior margin of the mandible was again established by palpation before the pterygomassetic sling was incised (Figure 2) after the parotid gland was anteriorly divided to reveal it. Subperiosteal dissection was performed after the sling had been neatly dissected up to the bone to reveal the fractured location (Figure 3). One alternative was to insert a screw at the angle to help divert the mandible inferiorly.

A titanium 2.0 mm 4-hole plate with 2 mm screws was used to stabilize fractures, and all of the layers were painstakingly closed with 4-0 vicryl. To avoid sialoele, extra care was taken to ensure a watertight cessation of the parotid fascia. 5-0 Prolene was used to seal the skin.

RESULTS
All 50 patients were assessed and no patients were excluded. The healing went well, and no one experienced significant scarring or hardware infection. 7 (14%) individuals experienced transient buccal branch weakness, while 2 (4%) experienced transient zygomatic branch dimness.

Medially displaced condylar neck fractures were the cause of all seven occurrences of buccal branch weakening. With the exception of these cases with a medially evacuated condylar neck...
fracture, which led to buccal branch weakening, the average duration from skin incision to closure after reduction & plating was one hour in all cases. During 8 weeks, five cases of buccal branch weakness were fully recovered, while two patients recovered after 11 weeks.

We found zygomatic branch weakening in 2 patients. It involved sub condylar fractures. All of these instances made a full recovery in 7 weeks.

After surgery, all subjects exhibited stable occlusion & normal mouth opening. Sialocele developed in 4 instances, and they all responded to local therapy. It took longer for the buccal branch of the facial nerve to heal than the zygomatic branch.

DISCUSSION
Maxillofacial surgeons frequently see condylar fractures since they are so prevalent (26–40%). The cornerstone in treating these fractures is open reduction & internal fixation. The facial nerve temporarily became paralyzed in 9 (18%) cases. Seven (14%) patients reported having buccal branch weakness. All of the medially displaced condylar neck fracture cases that led to buccal nerve palsy needed a significant amount of medial and superior retraction in order to grab the misplaced condylar fragment & subsequently realign it.

It's also crucial to remember that these fractures took a long time to heal. This contributed to the neuropaxia of the buccal branch, a condition marked by a protracted retraction of soft tissue. The narrow anatomical gap between the buccal & marginal mandibular branches is the foundation of the retromandibular approach. This anatomic window is frequently quite narrow and frequently comes into contact with the buccal branch, which must be pulled back and kept safe from the surgical site. This increases the pressure on the nerve which causes weakness.

We found rapid bleeding in situations where the zygomatic branch was weak; this bleeding was most likely coming from the retromandibular vein or a branch of it, and it required to be clamped and ligated. As there was little ocular surface available to stop the bleeding, the significant retraction was necessary to successfully accomplish hemostasis.

These maneuvers would have increased the nerve's transient palsy-causing retractive pressures. According to the literature, the transient facial nerve injury ranges from 12 to 25 percent, our 18% finding is in line with the same. In all of these cases of neurological damage, mecobalamin 1500mg was recommended for 3 weeks (once daily) to help in rehabilitation.

The submandibular method and pre-auricular approach are two examples of extra oral methods to the mandibular condyle. Nevertheless, due to its closeness to the fracture site & direct contact, the retromandibular trans parotid technique provides the greatest access to subcondylar fractures and even neck fractures. The use of an endoscope to ease intraoral access has been recommended, but the expenses associated with obtaining such a costly setup outweigh any minimal benefits.

Fig 1:

It is abundantly obvious from our study into the application of the retromandibular tranparotid approach that this method is safe, provides adequate and prompt access to the mandibular condylar neck/sub condylar region, and most importantly, safeguards the facial nerve. It might just result in a brief palsy that goes away entirely without leaving a long-term neurological damage.

Fig 2:

REFERENCES


