Review of Surgical Decompression of Three Cases of Ossified Ligamentum Flavum Causing Myelopathy

MUHAMMAD HANIF, RANA MUHAMMAD ARSHAD, MUHAMMAD TARIQ SOHAIL

ABSTRACT

Ossifications of spinal ligaments, such as ossification of ligamenta flava (OLF) and ossification of posterior longitudinal ligament (OPLL) in the cervical spine, is common and usually asymptomatic. Once cervical myelopathy and radiculopathy occurs due to the OPLL, OLF or both, surgical managements are often required when conservative treatment is not effective. The diagnosis is based on computed tomographic (CT) scan or magnetic resonance (MRI) imaging. The postoperative prognosis depends on the severity and duration of the cervical myelopathy. High cervical ossified ligamentum flavum (OLF) is rare and may cause progressive quadriparesis and respiratory failure. In dealing with cervical OLF, carefully preserving facets during laminectomy or laminoplasty helps in maintaining normal cervical spinal curvature. In our two patients of OLF in cervical spine, evident on MRI and sagittal reconstruction CT showing lateral bars and ossified ligamentum flavum causing thecal compression and one case of dorsal spine with hypertrophied OLF at D9,11 causing canal narrowing and thecal compression were treated by decompressive laminoplasty and laminectomy respectively resulting in appreciable relief in myelopathy in two patients. One of our patient with high cervical OLF and OPLL did not improved in immediate post-op period rather developed respiratory complications and aspiration pneumonia subsequently leading to mortality.

Key words: Myelopathy, decompression, ossified ligamentum flavum

INTRODUCTION

Ossification of the flaval ligament (OLF), also known as ossification of the yellow ligament, has been recognized as a cause of myeloradiculopathy since it was first reported by Polgar in 1920 by lateral radiographs. The coexistence of OLF and OPLL is relatively rare and typically contributes to severe radiculopathy as well as myelopathy. OPLL has been found at the thoracic spine in only 11%-25% of patients with cervical ossification, whereas OLF of the thoracic spine has frequently been associated with cervical OPLL. OLF is an acquired degenerative disease mainly affecting 20% of Asian individuals older than 65 years mostly affecting Japanese population rather rarely affecting our population in Pakistan. Some authors have correlated it to systematic diseases such as diabetes mellitus, hypoparathyroidism, Skeletal fluorosis, diffuse skeletal hyperostosis (DISH) ankylosing spondylitis, hemachromatosis, hyperthyroidism, and deposition of calcium pyrophosphate crystals. Others have correlated OLF to the elevated plasma concentration of fibronectin (a proactive protein in endochondral ossification), independently of the patients endocrinological profiles. On the other hand, some reports highlighted the importance of the mechanical factors in OLF development.

OPLL accompanies DISH up to 50% of the time. The DISH, is characterized by ossification along the ventral aspect of the cervical vertebrae, is found in 15 to 30% of adults older than 65 years of age.

The relative incidence of ossified ligamentum flavum (OLF) in the thoracic, lumbar and cervical spine is approximately 38.5% and 26.5% and 0.9% respectively.

CASE REPORTS

We reviewed three cases of OLF and OPLL involving cervical and dorsal spine, all presented with signs of myeloradiculopathy of varying degree. All were studied clinically and radiologically.

Case 1: Twenty eight years old female patient presented with six months history of asymmetrical spastic progressive quadriparesis with (power grade 4/5 of upper limbs and 3/5 in lower limbs). She had hyperreflexia, moderate to severe spasticity and loss of tactile, pain and posterior column sensations below C3.Hoffman sign and reverse radial reflex were positive. Cerebellar signs were negative. Her metabolic profile was normal except serum calcium 7.8 mg% and serum phosphate 2.1 mg%.
Excessive bulging of the spinal cord through the surgical corridor was noted. Excessive epidural bleeding was controlled with spongstones. There was no CSF leak per operatively. Patient did not improved neurologically in immediate post-op period rather developed respiratory complications and aspiration pneumonia subsequently leading to mortality three weeks after surgery.

Case 2: Forty six years old male patient presented with progressive burning sensation in whole body below neck, followed by progressive spastic quadriplegia for six months with intact spindler control. CNS examination revealed intact higher mental functions, cranial nerves and memory. Motor examination revealed hyperreflexia, severe spasticity and power 4/5. Sensations reduced below the clavicles. Lhermette and Hoffman signs were present and cerebellar signs were negative.

Metabolic profile and thyroid function tests were normal. Radiographic survey showing X-ray chest normal, X-rays of cervical and lumbar spine with osteophytes and syndesmophytes [Fig. 4, 5]. C.T with sagittal reconstruction revealed multiple levels PLL ossification and canal narrowing in cervical spine [Fig. 6]. MRI could not be done due to femoral implants of previous surgery for bilateral femoral fractures.
Surgical Decompression of Ossified Ligamentum Flavum Causing Myelopathy

A de-compressive open door laminoplasty was performed without any dural breach. The post operative course was uneventful without any complication. At 3 months follow up, he was able to walk without support.

Case 3: Fifty five years old female patient presented with five years old history of progressive weakness of both legs with power grade 0/5, severe spasticity and loss of pain and tactile sensations below D9 with intact spinster control. MRI showing hypertrophied OLF as multiple hypointensities on dorsal aspect of D9-11, with canal narrowing and spinal cord compression [Fig. 7]. Patient under went posterior decompression laminectomy from D9-11. Post operatives recovery was uneventful. At 3 months follow up the patient got improvement in his power (2/5) and sensations in the lower limb but developed bed sores and is under treatment.

DISCUSSION

The underlying etiology and pathogenesis of OLF and OPLL remains an enigma. However, the association of OLF and OPLL may share similar etiology and pathogenesis with other hyperostotic conditions e.g. ankylosing spondylitis, Forestier disease etc.

OLF is characterized by hyperplasia of cartilage cells with eventual endochondral ossification of posterior longitudinal ligament. It has been suggested that clinical manifestations related to thoracolumbar ossification are more severe that those associated with cervical involvement, although patients with the former may be entirely asymptomatic.

The most frequently reported location of OLF is the lower third of the thoracic spine. The second peculiarity was the presence of pseudodegenerative changes at the interface between the two separated bony outgrowths, leading to a pseudorarthritic pattern of so called neo-joint or neoarticulation.

OLF frequently occurs at the thoracic and thoracolumbar regions below C6-7, as ossification starts at the densely adherent ligament-osseous junction (enthesis); increased LF craniocaudal thickness combined with a narrower thoracic canal diameter leads to its earlier detection; and static tension causes decreased elastic fibers and the emergence of hyalinized collagen fibers, fibrocartilaginous cells and interligamentous calcification.

Cervical OLF is usually rare as cervical flexion-extension enables LF to frequently becomes lax and thus maintain its elastic fibers. A similar situation in the thoracolumbar region produces stress on the LF between the rigid rib cage above and the flexible lumbar spine leading to a higher frequency of OLF in this region. Under this cyclical stress significant degradation of elastic fibers, fiber bundle degeneration, decrements in fiber diameter and fragmentation occur. The progress of calcification and ossification are closely associated with the degeneration of elastic fibers with expression of bone morphogenetic protein-2, transforming growth factor beta, and vascular endothelial growth factor in the ossification front.

The appearance of OLF on CT may be of three types, lateral, diffuse, thick and nodular. Our patients had predominantly diffuse type of OLF. A strong association with ossified posterior longitudinal ligament and with OLF at other sites of the spine has also been noted. An asymptomatic cervical OLF associated with the symptomatic thoracic one has been reported emphasizing the role of screening MRI of the entire spine. The degree of spinal cord

Fig: 6 CT with saggital reconstruction showing multilevel OPLL and canal narrowing in cervical spine

Fig: 7 MRI showing hypertrophied OLF as multiple hypointensities on dorsal aspect of D9-11.
compression by the OLF on intrathecal contrast CT has been classified as: Type I: partial contrast media ring deficit; Type II: narrowing of characteristics of contrast media ring; and Type III: disappearance of contrast media ring. A decompensative laminectomy including one level above and below the lesion, was the procedure of choice. During drilling, cord injury was avoided by gently making the OLF wafer-thin, disconnecting it from the vertebral body in the lateral spinal gutters on the side of the dura using micro-Kerrison’s punches; and then gently elevating it from the dura. In case the dura is densely adherent to the OLF and gets opened during its excision then a fat fascial graft may be placed with fibrin glue in the gutter created. In case the rent is large then a lumbar cerebrospinal fluid drain for three days with oral acetazolamide 250mg OD may be added. In certain cases, the OLF being adherent to the outer wall of the dura may have to be excised along with it. A pure formaminotomy and extended hemilaminectomy would have caused difficulty in defining the OLF-duramater interface and also in controlling epidural bleeding by the narrow surgical corridor. The chances of cord injury above and below the decompressed levels are high as the structures in the spinal canal are very tight indicated by the excessive bulging of spinal cord/dura through the surgical corridor. The high cervical combined OLF and OPLL was avoided by gently making the OLF wafer gutter created. In case the rent is large then a lumbar formaminotomy and extended hemilaminectomy would have caused difficulty in defining the OLF-duramater interface and also in controlling epidural bleeding by the narrow surgical corridor. Failure to do so may result in the wrong operative approach, inadequate decompression and increased neurological dysfunction.

REFERENCES