Detection of Renal Malignancy on Multi-detector Computed Tomography in Patients Presented with Hematuria

ZAHID NAZIR1, ATIF MAQSOOD2, MUHAMMAD AHMAD ASGHER3
1Assistant Professor of Radiology, Government Kot Khawaja Saeed Teaching Hospital Lahore, King Edward Medical University Lahore
2Assistant Professor of Medicine, Aziz Fatimah Hospital Faisalabad.
3Assistant Professor of Medicine, Amna Inayat Medical College, Sheikhupura
Correspondence to: Dr. Zahid Nazir Email: dznazihradiologist@gmail.com

ABSTRACT

Aim: To determine the diagnostic accuracy of MDCT in detection of renal carcinoma taking histopathology as gold standard.

Study Design: Cross sectional study

Place and Duration of Study: Department of Radiology, Government Kot Khawaja Saeed Teaching Hospital, Lahore from 1st June 2018 to 31st December 2018.

Methods: One hundred patients who fulfilling criteria were included. Then MDCT was applied to detect the cause of hematuria and then was underwent renal biopsy for confirmation of renal disease causing hematuria. Findings were noted and accuracy of MDCT was noted.

Results: The mean age of patients was 53.74±11.39 years. The mean duration of symptoms was 5.42±1.56 days. There were 77 males and 23 females. In the sample 12(12%) had family history of renal calculi. In the sample 7(7%) had family history of renal carcinoma. The MDCT had sensitivity: 70.2%, specificity: 81.4%, PPV: 83.3%, NPV: 67.3%, accuracy: 75% for detection of renal carcinoma.

Conclusion: Multi-detector computed tomography is accurate enough that it can replace interventional methods to diagnose renal carcinoma including renal biopsy.

Keywords: Hematuria, Renal calculi, Renal carcinoma, Malignancy, Multi-detector computed tomography

INTRODUCTION

Haematuria is existence of blood in the urine sample, which can be present as macroscopic or microscopic. Main reasons for haematuria are abnormalities of blood, urinary tract infections/neoplasms, stones, injuries, bilharziasis, benign prostatic hyperplasia, glomerulonephritis, etc.1 Other less common causes are urinary tract allergies, renal vein hypertension, thrombosis, inferior vena cava, bladder wall varices, and endometriosis.1,2

Haematuria can be indicative of serious illnesses like bladder or renal cell carcinoma, urothelial cell carcinoma or calculi in upper urinary tract.3,4 Different radiological methods are available which can help to investigate the presence of haematuria including intravenous urography, retrograde ureterography and pyelography, ultrasonography, CT, cystoscopy and ureteroscopy.5 Multi-detector CT (MDCT) acquires thin collimated data of urinary tract and provides higher spatial resolution than conventional CT. Its capability to offer reconstructions in coronal, sagittal and oblique planes, makes it exact in stone position and several urinary tract diseases. It offers exact anatomical features of vital organs, providing important information to planteartment protocols.6

Multi-detector computed tomography is replacing conventional urography extensively as first-line diagnostic tool for assessment of renal tract.7,8 Multi-detector computed tomography is applied in many clinical setting to detect the upper renal system for and and metachronous urothelial tumors and primarily for detection of haematuria.9,10

So we planned to conduct this study as there is not much literature available in this regard. As if MDCT showed more accuracy for detection of renal carcinoma, then in future we can implement the MDCT as first line detection tool to detect renal carcinoma in patients with renal colic pain and other symptoms.

MATERIALS AND METHODS

This cross sectional study was done at Department of Radiology, Government Kot Khawaja Saeed Teaching Hospital, Lahore from 1st June 2018 to 31st December 2018. One hundred patients of renal malignancy with hematuria were included. The patients were recruited through the emergency with complaint of renal colic pain, voiding problem, creatinine>1.2mg/dl, with or without renal calculi (on x-ray KUB) and hematuria (on urine analysis). Patients with previous treatment of renal calculi or malignant or benign disease, were excluded. Informed consent was obtained and patient were assured about confidentiality of their data used for this research. Demographic details were obtained. Then patients were underwent X-ray KUB for detection of renal calculi. Then MDCT was done with 4-, 16-, or 64-MDCT scanner (Volume Zoom, Sensation 16 & 64, Siemens Healthcare). All the patients were advised to drink 1L oral water and void just before examination. Patients underwent scanning in supine position. This protocol include unenhanced scanning (collimation, 0.6-2.5mm; 120kVp; pitch, 0.875-1.25; 155-280mA) of abdominal & pelvic region, nephron-graphic phase imaging of kidneys (collimation, 0.6-2.5mm; 120kVp, pitch, 0.875-1.25; 155-280mA) 100seconds after administration of 100mL iopromideintravenouslyat the speed of 3mL/s, and excretory phase imaging of abdominal & pelvic region (collimation, 0.6–1.0mm; 120 kVp; pitch,
Detection of Renal Malignancy on Multi-detector Computed Tomography in Patients Presented with Hematuria

0.65–1.00; 160–280mA) 15 min after infusion of contrast medium. Excretory phase images were also reconstructed in 3mm to 5mm thick sections of axial planes & 3mm thick sections of coronal planes. Then these findings were categorized as: large mass (>5mm), small mass (≤5mm) or urothelial thickening. Patients were labeled positive or negative. Then patient will undergo renal biopsy for confirmation of renal carcinoma. Data was entered & analyzed in SPSS version 21. 2x2 table was used to calculate sensitivity, specificity, PPV, NPV and accuracy of MDCT.

RESULTS

The mean age of patient was 53.74±11.39 years. There were 277 (77%) males and 23 (23%) females. The mean duration of symptoms was 5.42±1.56 days. There were 54 (54%) patients belonged to low socioeconomic status, 38 (38%) belonged to middle class while 8 (8%) belonged to high class. In the sample 12 (12%) had family history of renal calculi. In the sample 7 (7%) had family history of renal carcinoma. Renal stone was detected in 62 (62%) cases (Table 1). The MDCT had Sensitivity: 70.2%, specificity: 81.4%, PPV: 83.3%, NPV: 67.3%, accuracy: 75% for detection of renal carcinoma (Table 2).

<table>
<thead>
<tr>
<th>Table 1: Demographic details of patient (n=100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>Gender (M / F)</td>
</tr>
<tr>
<td>Duration of symptoms (days)</td>
</tr>
<tr>
<td>Socioeconomic status</td>
</tr>
<tr>
<td>Family history of renal calculi</td>
</tr>
<tr>
<td>Family history of renal carcinoma</td>
</tr>
<tr>
<td>Renal stone detected</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2: Accuracy of MDCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDCT</td>
</tr>
<tr>
<td>Positive</td>
</tr>
<tr>
<td>Negative</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Sensitivity: 70.2%, specificity: 81.4%, PPV: 83.3%, NPV: 67.3%, accuracy: 75%

DISCUSSION

In a previous research, the incidence of hematuria was 14%, which was detected on MDCT urography. Song et al. found the prevalence of hematuria i.e. 6.8% which is highly significant extraneous findings of MDCT. Multi-detector computed tomography can also aid to identify active haemorrhage and leakage of urine. It is very accurate in evaluation of high-grade trauma and also helps in guiding Transcatheter embolization and defining pre-existing diseases. Multi-detector computed tomography displays well-established several traumatic renal lacerations with appropriate diagnosis and staging of trauma renal organ and also helped in planning proper management.

In our study, the MDCT had sensitivity: 70.2%, specificity: 81.4%, PPV: 83.3%, NPV: 67.3%, accuracy: 75% for detection of renal carcinoma. Yousef & Seifelnasr found that in detecting the etiology of haematuria, the sensitivity of MDCT was 82%. For detection of recurrence in the bladder, whole diagnostic accuracy of MDCT was reported to be significantly higher for nephrographic phases than for pyelographic phases [91.7% versus 83.2%, p<0.05]. For detection of recurrence in the upper urinary tract, the overall diagnostic accuracy of MDCT was also significantly higher for nephrographic phase than for pyelographic phase [86.7% versus 80%, p<0.05].

Cha et al. conducted a trial to build-up system, which would be computerized, for segmentation of bladder in the CT urography as the critical constituent for computer assisted recognition of carcinoma of the bladder. Researchers found that deep learning library-convolutional neural network can overwhelm solid margins in two regions, which have hued similarity in grey levels. This also offers smooth mask to monitor level set amplification which was the problem for several gradient based dissection procedures.

Sadow et al. reported that CT urography for upper tract urothelial carcinoma has 53% predictive value, 83% for large masses, 0% for small masses and 46% for urothelial thickening.

CONCLUSION

Multi-detector computed tomography is accurate enough that it can replace interventional methods to diagnose renal carcinoma including renal biopsy. Now in future, we can recommend the use of MDCT for detection of renal carcinoma in patients with hematuria with or without renal calculi as first line diagnostic modality in order to avoid interventional methods.

REFERENCES


