Frequency of Metabolic Syndrome in Patients with Acute Ischemic Non-Embolic Stroke

HAFIZ ABDUL GHAFFAR NAEEEM, AZFAR FAROGH*, MUHAMMAD HASSAN**

ABSTRACT

Aim: To determine the frequency of metabolic syndrome in pts with ac. non-embolic ischemic stroke.

Methods: This study was conducted in Department of Medicine, BVH, Bahawalpur from February 2013 to August 2013. Total 288 patients of stroke with infarction on CT scan (hypodense area on CT scan) and meeting the inclusion and exclusion criteria were included in the study. Demographic data (age and gender), history of presenting illness and previous known risk factors were obtained. Physical examination was done including blood pressure and waist circumference measurement. Venous sample for HDL cholesterol, triglycerides and fasting plasma glucose were taken after 8 hour of overnight fast. CT scan/MRI was done to confirm infarction. Source of embolus ruled out by ECG, echocardiography and carotid doppler angiography.

Results: In this study population, 57.3% were male and 42.7% were female with mean age of 56±7 years in men and 54±7 years in females. Frequency of metabolic syndrome was 43.6% in men and 65% in women.

Conclusion: This study clearly shows that metabolic syndrome is an important risk factor for acute ischemic non-embolic stroke. It supports the potential for preventive efforts in persons with high risk of ischemic stroke.

Keyword: Metabolic syndrome, acute ischemic non-embolic stroke, Blood pressure, Obesity

INTRODUCTION

Stroke is one of the top four leading causes of morbidity and mortality throughout the world1. It is an acute neurologic injury of vascular origin. A uniform definition of stroke is vital for epidemiological studies. According to World Health Organization (WHO), stroke is defined as ‘rapidly developing clinical signs of focal (or global) disturbance of cerebral function, with symptoms lasting 24 hrs or longer, or leading to death, with no apparent cause other than that of vascular origin. This definition includes stroke due to both cerebral infarction and hemorrhage2. Thrombosis can form in the extracranial and intracranial arteries when the intima is roughened and plaque forms along the injured vessel. The endothelial injury (roughening) permits platelets to adhere and aggregate, then coagulation is activated and thrombus develops at the site of plaque. Blood flow through the extracranial and intracranial systems decreases and the collateral circulation maintains function. When the compensatory mechanisms of collateral circulation fail, perfusion is compromised, leading to decreased perfusion and cell death. During an embolic stroke, a clot travels from a distant source and lodges in cerebral vessels. Microemboli can break away from a sclerosed plaque in carotid artery or from a cardiac source such as atrial fibrillation or a hypokinetic left ventricle3. Pakistan is the sixth most populated country in the world, with estimated population of 167 million4. Non-communicable diseases including stroke now accounts for 41% of total disease burden of Pakistan5. In a population dense country like Pakistan, an estimated 4.8% may be suffering from stroke6; this translated to 7.2 million individuals, compared to 700,000 annually in the United States. The incidence and mortality of stroke vary greatly among different populations and has declined in several foreign studies. An estimated 94% of deaths from stroke in South Asia occur in people younger than 70 years in contrast to only 6% in countries with established economies owing to greater loss in the disability adjusted life years (DALYs)7.

METHODOLOGY

This study was conducted in Department of Medicine, BVH, Bahawalpur from February 2013 to August 2013. Total 288 patients of stroke with infarction on CT scan (hypodense area on CT scan) and meeting the inclusion and exclusion criteria were included in the study. Inclusion criteria was: Patients of any gender and >14 years of age having acute neurological deficit with hypodense area on CT scan brain without any source of emboli on echocardiography (valvular heart disease, intra-
cardiac thrombus and vegetations) and carotid doppler (narrowing of carotids). Patients having no established infarction on CT brain, Patients having definite source of emboli like atrial fibrillation, valvular heart disease, infective endocarditis etc, having acute myocardial infarction, having recurrent TIA and Patients having chronic ailment like CRF, CCF, and CLD were excluded from the study. All data was entered into SPSS version 10 and analyzed. Mean and SD was calculated for numerical variables and frequencies & percentages were calculated for categorical variables.

RESULTS

Total 288 patients of acute ischemic stroke were included in this study. Mean age of the patients was 55.1±7.6. Metabolic syndrome was found in 52.8% patients (Fig 1). Out of 288 patients, male patients were 165(57.3%) and metabolic syndrome was found in 72(43.6%) patients. Female patients were 123(42.7%) and metabolic syndrome was found in 80(65%) female patients. Strong association was found between gender and metabolic syndrome (P <0.05). The mean triglycerides level was 150.36±17.9 mg/dl. The mean HDL level was 44.6±5.8 mg/dl. The mean fasting blood glucose level was 117.6±38.3 mg/dl.

Results of the different components of the metabolic syndrome were also shown in table 2. The most prevalent components were hypertension and low HDL, these were positive in 167 patients (57.9%) followed by diabetes and raised triglycerides level in 135 patients (46.9%).

DISCUSSION

The term “metabolic syndrome” consists of a constellation of metabolic abnormalities that confer increased risk of cardiovascular diseases and stroke. According to National Cholesterol Education Program (NCEP)/Adult Treatment Panel (ATP) III and International Diabetes Federation (IDF), major features of metabolic syndrome include obesity, hyper triglyceridemia, low HDL cholesterol, hyperglycemia and hypertension. Each of these factors can lead to ischemic stroke. Our study demonstrated that frequency of metabolic syndrome in acute ischemic non-embolic stroke patients was 52.8% (152 out of 288). Our observation was supported by Gorter et al who found metabolic syndrome in 40 to 50% of patients with various cerebrovascular diseases

Patients with ischemic stroke in a study conducted by Koren-Morag et al reported metabolic syndrome in 61% of South Asian patients with ischemic stroke. In Framingham offspring study, metabolic syndrome was found to be a more important risk factor for ischemic stroke as compared to diabetes mellitus.

In our study, metabolic syndrome was found in 65% females as compared to 43.6% males. The Northern Manhattan study, which included Hispanic, African-American, and Caucasian subjects, reported an increased risk of stroke among women with metabolic syndrome compared to men. Koren-Morag et al similarly reported that metabolic syndrome without diabetes mellitus was a significant risk factor for ischemic stroke in both sexes, but the effect was more pronounced in women. So female sex is also a risk factor for metabolic syndrome which can lead to ischemic stroke.

Our data has shown strong association between dyslipidemia and ischemic stroke as triglyceride levels ≥150 mg/dl was present in 136 (46.9%) cases and HDL levels ≤50 mg/dl was present in 167 patients (57.9%). According to Copenhagen City Heart Study, a 47% reduction in ischemic stroke was
found for 1.0 mmol/l (39 mg/dl) rise in HDL. Our study is also in consistence with Milionis et al, which stated that high TG levels and low HDL levels had a relationship with ischemic stroke.

Increased waist circumference which represents abdominal obesity, has a strong association with stroke in our study as a waist circumference greater than 102 cm in men and 88 cm in female was present in 131 patients. A study by Isomaa et al noticed obesity in 76% patients with normal glucose tolerance and 92% of diabetic patients with ischemic stroke.

High blood pressure has emerged as an important component of metabolic syndrome in our patients as 167 patients (57.9%) had blood pressure ≥130/85 mm of Hg. In one study conducted by Wang Y et al, it was concluded that frequency of hypertension was 70% among patients of ischemic stroke. McNeill et al found high blood pressure as an important component of metabolic syndrome, which increased the risk of ischemic stroke by 1.5-2 times.

Impaired fasting glucose and diabetes has a strong association with stroke in our study, as fasting blood sugar greater than 100 mg/dl was present in 137 (47.6%) patients. These results were supported by study conducted by Basharat et al, which concluded that the most frequent risk factor of stroke was hypertension 86.8% followed by diabetes mellitus 59.8%, dyslipidemia 59.1%, and smoking 18.1%. They also concluded that low HDL is an emerging risk factor of ischemic stroke.

CONCLUSION
This study clearly shows that metabolic syndrome is an important risk factor for acute ischemic non-embolic stroke. Frequency of metabolic syndrome in ischemic stroke was higher in female patients as compared to males. Hypertension and low HDL levels were more frequent components of metabolic syndrome in our study.

REFERENCES