Effect of Chronic Cigarette Smoking on Plasma Fibrinogen and Haematocrit

ABDULLAH ABBASSI¹, HABIBULLAH QURESHI², SEEMEEN GHAFOOR³, SHAHEENA⁴, ABDUL WAHAB SHAIKH⁵

ABSTRACT

Aim: To observe the effects of chronic cigarette smoking on plasma fibrinogen levels and haematocrit, along with hemoglobin, total leukocyte count and erythrocyte counts.

Methods: A total of 102, apparently healthy subjects, of the age ranging from 25-35 years were included in the study. 72 smokers (36 heavy and 36 moderate smokers) and 30 non smokers with similar dietary habits and socioeconomic conditions were investigated for the above mentioned parameters.

Results: All the parameters were significantly increased (p< 0.0001) in smokers as compared to non-smokers. Significant rise was also seen in values of all parameters of heavy smokers when compared to moderate smokers, plasma fibrinogen p= <0.05; haematocrit and haemoglobin p =<0.001. total erythrocyte and total leucocytes p = <0.001.

Conclusion: Cigarette smoking has deleterious effects on the properties of blood flow by raising plasma viscosity more in heavy smokers than moderate smokers.

Keywords: Cigarette smoking, fibrinogen, haematocrit, ischemic heart disease.

INTRODUCTION

Cigarette smoking is one of the largest causes of preventable death worldwide. It is the leading cause of coronary artery disease (CAD), 2-4 times higher in smokers than in non smokers. Cigarette smoking and other forms of tobacco consumption kill four million people per year, with the majority of these deaths already occurring in developing countries¹. National Health Survey of Pakistan indicates that smoking is a major problem in Pakistan. Smoking is more common in males than females. It has been estimated that 54% of men and 20% of women use some form of tobacco on regular basis².

Smoking has been reported to exert a significant effect on almost all the hematological parameters including haematocrit, plasma fibrinogen, hemoglobin, red blood cell (RBC) count and white blood cell (WBC) count³. Cigarette smoking has several deleterious effects on the properties of blood flow and these are quickly reversible or partly so, once smoking has been stopped. Hemoglobin, haematocrit and fibrinogen along with carboxyhemoglobin and plasma viscosity are raised by smoking, and cardiac output is decreased with raised haematocrit. Smoking is the strongest known determinant of fibrinogen levels in healthy persons. This relationship is dose dependant and reversible after smoking cessation⁴,⁵.

The study of Harrison et al, has suggested that a high haematocrit may be associated with the risk of carotid thrombosis. High haematocrit and fibrinogen have been observed in these patients and higher they are worse is the prognosis⁶. Smoking is strongly related to plasma fibrinogen concentration. Smoking is the strongest known determinant of fibrinogen levels in healthy persons. This relationship is dose dependant and reversible after smoking cessation⁴,⁵. Elevated plasma fibrinogen concentrations are reported in smokers as compared to nonsmokers, and implicated as risk factor for stroke and myocardial infarction⁹,¹⁰,¹¹.

The association between smoking and high leukocyte and erythrocyte count has been demonstrated in many studies¹²,¹³. Haematological variables deteriorate in parallel with a rise in cigarette consumption, highest in current smokers, particularly with high consumption of cigarettes and lowest in never smokers¹⁴,¹⁵. Leukocytes play a major role in inflammatory processes. The circulating WBC count has been proposed as one of a few biomarkers of potential current utility for cardiovascular risk prediction⁷. Although a role as a biomarker of cardiovascular risk has been suggested for total WBC, the relative ability of specific WBC subtypes to
predict cardiovascular risk in asymptomatic individuals remain largely unexamined10. Early detection of atherosclerosis may help to prevent complications of the disease or slow its progress, which is difficult to predict by standard risk factors alone9. Systemic inflammation involving activated polymorphonuclear neutrophils is clearly associated with unstable condition of coronary artery disease and an increased number of circulating neutrophils is a well known risk indicator of future cardiovascular outcomes20. The neutrophil/lymphocyte ratio has recently been described as a predictor of mortality due to cardiovascular diseases25,26,30.

MATERIAL AND METHODS

This study was carried out in the department of Physiology, Basic Medical Sciences Institute, Jinnah Postgraduate Medical Centre, Karachi. A total of 102(72 smokers, with a smoking history of not less than 10 years, and 30 non smokers) apparently healthy, male subjects of age ranging between 25 -35 years, were randomly selected from the general population of Karachi. Subjects were grouped as smokers: test group (72 further sub grouped according to number of cigarettes smoked per day, Moderate smokers (36) smoking > 20 cigarettes per day Heavy smokers (36) smoking <20 cigarettes per day.

Exclusion criteria: Subjects excluded from the study were those suffering from any acute or chronic diseases like, respiratory diseases, gastrointestinal and liver diseases, ischemic heart diseases, endocrine diseases, hypertension, anemia and had history of blood donation or blood loss from the body in last six months.

Haematocrit values were estimated by microhaematocrit method on microhaematocrit machine (Harmle, Germany). Quantitative determination of plasma fibrinogen level was done the clotting method using kit, Cat. No. 00609 supplied by Diagnostic Stago, France. Blood hemoglobin level was estimated by Cayanmet hemoglobin method by using kit, Cat.No.950051, supplied by Labsystems Pakistan (Pvt) Ltd. Counting of white blood cells was done by counting chamber method. Counting of red blood cells was done by counting chamber method.

RESULTS

A total of 102 apparently healthy male subjects of age ranging between 25-35 years, with similar dietary habits and socio-economic conditions were recruited into the study. Subjects were grouped according to the smoking habits into non-smokers (n=30) and smokers (n=72). Smokers were further subdivided depending upon number of cigarettes smoked per day as moderate smokers (n=36) and heavy smokers (n=36). The results are given in tables I to III.

Table I shows comparisons of mean (±SEM) of age, body mass index (BMI), pulse rate, systolic blood pressure, and diastolic blood pressure in non-smokers (Control) and smokers. No significant differences were found in these parameters when smokers compared to non-smokers.

Table II represents comparative analysis of plasma fibrinogen, haematocrit, WBC count, RBC count and hemoglobin levels in non-smokers (Control) and smokers. The mean (±SEM) levels of plasma fibrinogen, haematocrit, WBC count, RBC count and hemoglobin levels were found significantly (P < 0.001) high in smokers as compared to control.

Table III represents the comparative analysis of various hematological parameters in non-smokers (control), moderate smokers and heavy smokers. The mean (±SEM) values of plasma fibrinogen, haematocrit, WBC count, RBC count and hemoglobin level were found highest in heavy smokers, lowest in non-smokers (control) and moderate smokers had intermediate values. The differences were highly significant (P< 0.001) for haematocrit, WBC and hemoglobin, when different groups were compared to each other. RBC count showed significant change when moderate smokers group was compared with control group (P<0.05) and heavy smokers group (P<0.01). However, highly significant difference

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Controls (n=30)</th>
<th>Smokers (n=72)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years)</td>
<td>29.90 ± 0.55</td>
<td>29.97 ± 0.32</td>
</tr>
<tr>
<td>BMI (Kg/m2)</td>
<td>22.08 ± 0.20</td>
<td>21.88 ± 0.11</td>
</tr>
<tr>
<td>Pulse Rate (per minute)</td>
<td>71.87 ± 0.39</td>
<td>71.92 ± 0.23</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>117.60 ± 0.76</td>
<td>117.06±0.71</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>77.07 ± 0.80</td>
<td>76.19 ± 0.61</td>
</tr>
</tbody>
</table>

Values are given as mean ± SEM.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Controls (n=30)</th>
<th>Smokers (n=72)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma Fibrinogen</td>
<td>263.7±8.65</td>
<td>353.72±7.84</td>
</tr>
<tr>
<td>Haematocrit (%age)</td>
<td>42.10±0.24</td>
<td>47.79±0.22</td>
</tr>
<tr>
<td>WBC (thousands/mm3)</td>
<td>6.98±0.15</td>
<td>8.37 0.09*</td>
</tr>
<tr>
<td>RBC (millions/mm3)</td>
<td>5.06±0.03</td>
<td>5.21±0.02</td>
</tr>
<tr>
<td>Haemoglobin (g/dL)</td>
<td>14.53±0.12</td>
<td>16.07±0.10</td>
</tr>
</tbody>
</table>

Values are given as mean ± SEM.
P < 0.001 as compared to control
studies found that leukocyte smoking may increase WBC count are unknown. One cigarette significantly increases the number of leukocytes. This study. All are agreed on the fact that smoking of these studies are consistent with results of our This finding is compatible with previous workers cigarettes was also observed in the present study. This favors the studies of many workers. The increase in hemoglobin forming carboxyhemoglobin, which interferes with the oxygen transport and utilization leading to hypoxia. Carbon monoxide induced hypoxia produces a demand for more erythrocytes. This may lead to increased levels of hemoglobin, heamatocrit and RBC count in patients with systemic intracranial atherosclerotic disease.

Findings of the present work showed marked effect of smoking on RBC count as the smokers had higher number of RBCs when compared to non-smokers. Similar results were reported by Helmen and Rubenstein. The possible explanation for elevated hemoglobin, heamatocrit and RBC count in the blood is that the change is possibly due to carbon monoxide (CO), another toxic substance present in the cigarette smoke. Carbon monoxide reacts with hemoglobin forming carboxyhemoglobin, which interferes with the oxygen transport and utilization leading to hypoxia. Carbon monoxide induced hypoxia produces a demand for more erythrocytes.

Hemoglobin level was found elevated in smokers and the response was dependent on the number of cigarettes smoked per day. Similar observations were documented by other investigators.

The results showed significantly higher values of plasma fibrinogen, heamatocrit, WBC count, RBC count and hemoglobin in smokers. It is concluded that there may be a positive association between the increased levels of these hematological parameters and the number of cigarettes smoked per day.

DISCUSSION

Long-term smoking is associated with an increased risk of cardiovascular diseases, several cancers and many chronic inflammatory diseases. Cigarette smoke contains a large number of toxic chemicals that cause oxidant-antioxidant imbalance including oxidative stress and produce unfavorable changes in various hematological parameters.

This study was designed to assess the effects of chronic cigarette smoking on various hematological parameters (plasma fibrinogen, heamatocrit, WBC count, RBC count and hemoglobin).

Raised fibrinogen in smokers reported here are in agreement with Wilhelmsen et al., Galea and Davidson and Rigotti and Pasternak. In another study carried out by D.O. Gordan et al. fibrin D-dimer (a marker of fibrin turnover) was found to be associated with a stronger predictor of coronary risk than inflammatory markers, perhaps due to its ability to stimulate monocyte release of interleukin-6 (a cytokine in the process of inflammation). Fibrinogen also showed a dose dependent relationship with smoking. This finding is compatible with previous workers.

In the present study a significant positive relationship was observed between heamatocrit and smoking. This favors the studies of many authors. The increase in heamatocrit concentration with the increase in number of cigarettes was also observed in the present study. This finding is compatible with previous workers.

The effect of smoking on leukocytes has been studied by many workers and the results of all of these studies are consistent with results of our study. All are agreed on the fact that smoking significantly increases the number of leukocytes. This response is closely related with the number of cigarettes smoked per day. The mechanism by which smoking may increase WBC count are unknown. One of the postulates is that nicotine induces release of catecholamines that can raise the WBC count. Another is that there is an irritant effect of cigarette smoke on the respiratory tree with resultant inflammation. It is reported that WBC count increases during infection and inflammatory illnesses and has been shown to predict coronary heart diseases, independent of traditional cardiovascular risk factors. Some studies found that leukocyte count is associated with aortic arch plaque thickness, progress of aortic atheroma in patients with stroke or increased risk of stroke and vascular death in patients with systemic intracranial atherosclerotic disease.

Table III: Plasma fibrinogen, hematocrit, WBC count, RBC count and haemoglobin in controls, moderate smokers and heavy smokers

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Controls (n = 30)</th>
<th>Moderate smokers (n = 36)</th>
<th>Heavy smokers (n = 36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma Fibrinogen (mg/dL)</td>
<td>263.7 ± 8.65</td>
<td>336.58 ±9.79</td>
<td>370.86 ±11.69</td>
</tr>
<tr>
<td>Haematocrit (%age)</td>
<td>42.10 ± 0.24</td>
<td>46.44 ±0.26</td>
<td>49.14±0.15</td>
</tr>
<tr>
<td>WBC Count (thousands/mm³)</td>
<td>6.98 ± 0.15</td>
<td>7.79 ±0.09</td>
<td>8.95±0.09</td>
</tr>
<tr>
<td>RBC Count (millions/mm³)</td>
<td>5.06 ± 0.03</td>
<td>5.161 ±0.03</td>
<td>5.266±0.01</td>
</tr>
<tr>
<td>Haemoglobin (g/dL)</td>
<td>14.53 ± 0.12</td>
<td>15.51 ±0.12</td>
<td>16.63±0.10</td>
</tr>
</tbody>
</table>

P < 0.05 §§§ as compared to control P < 0.001 as compared to controls P < 0.05, §§ P < .01, §§§ P < 0.001 when heavy smokers compared with non smokers.
larger scale study is desired to establish a reference range in our population.

REFERENCES