Detection of Methicillin Resistant (MECA) Gene from Staph Aureus by PCR

MUHAMMAD ZEESHAN TABASSAM, OBAIDULLAH QAZI*, ZAHID IBRAHIM**, MUHAMMAD FAROOQ**,MUHAMMAD IMAM DIN***

ABSTRACT
Aims: To detect mecA gene by polymerase chain reaction (PCR) and to demonstrate an efficient method for the detection of mecA gene of MRSA.
Methodology: In the present study, 60 MRSA strains on disc diffusion culture plates were collected from three laboratories from October, 2012 to January, 2013. The DNA of MRSA was extracted by phenol / chloroform extraction method and specimen were processed by the standard PCR technique.
Results: The mecA gene was detected in 31 strains from 60 MRSA isolates on disc diffusion. The prevalence of (Mutated?) MRSA strains among MRSA strains on disc diffusion culture plates isolates was 51.7%. These samples give 310 bp products on 1% agarose gel and others 29 samples gave no product.
Conclusion: This study shows that the PCR for mecA gene is an efficient method to detect the methicillin resistance S. aureus and mecA gene is necessary for the resistance in methicillin resistance S. aureus.
Keywords: MRSA, mecA gene, PCR

INTRODUCTION
Resistance is primarily mediated by the production of an altered penicillin-binding protein (PBP2a) which catalyses the transpeptidation reaction that cross-links the peptidoglycan of the bacterial cell wall. There are four penicillin-binding proteins: PBP1, PBP2, PBP3 and PBP4. PBPs have a high affinity for β-lactam antibiotics, which covalently bind to the PBPs and inhibit transpeptidation, preventing the terminal step in the peptidoglycan synthesis. MRSA differs genetically from Methicillin-Sensitive S. aureus (MSSA) by the presence of a chromosomal mecA gene (2007 bp) which encodes the 76 KDa PBP2a. PBP2a is unlike other constitutive PBPs, having a low affinity for β-lactam antibiotics. Infections caused by MRSA are increasing in prevalence in adults and children, and the detection of MRSA has important implications for the therapy and management of patients infected with this organism1.

The last decade has seen an alarming increase in MRSA infections in Pakistani hospitals. Pakistan’s Armed Forces Institute of Pathology provides laboratory services to a 1,500-bed tertiary-care hospital in Rawalpindi and is the main reference laboratory in northern Pakistan. According to that database, the frequency of MRSA among all nosocomial isolates of S. aureus increased from 39% (212/543) in 1996 to 51% (516/1,018) in 20032.

METHODOLOGY
The study was conducted in Lahore, the capital of Punjab province and the second largest city of Pakistan. Following laboratories are included: Chughtai Lahore Laboratory, SIMS laboratory, PGMI Laboratory. All culture plates positive for MRSA on disc diffusion were included and culture plates of MRSA having contamination were excluded from the study.

RESULTS
The detail of results is given in tables 1 and 2

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Positive</th>
<th>Negative</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>31</td>
<td>29</td>
<td>60</td>
</tr>
<tr>
<td>%age</td>
<td>51.7 %</td>
<td>48.3 %</td>
<td>100%</td>
</tr>
</tbody>
</table>

*Microbiologist, Department of Bacteriology, IPH, Lahore
**Pathologist, Emergency Lab, SIMS/SHL, Lahore
***Technologist, Shahdara Hospital, Lahore
Correspondence to: Muhammad Zeeshan Tabassam, Medical Laboratory Technologist, Emergency Lab. Services Hospital, Lahore
Table 2: Frequency of positive & negative samples from different labs

<table>
<thead>
<tr>
<th></th>
<th>Chughtais Lahore Lab</th>
<th>SIMS</th>
<th>PGMII</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>%age</td>
<td>Frequency</td>
</tr>
<tr>
<td>Positive</td>
<td>14</td>
<td>56</td>
<td>11</td>
</tr>
<tr>
<td>Negative</td>
<td>11</td>
<td>44</td>
<td>09</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>100</td>
<td>20</td>
</tr>
</tbody>
</table>

Lahore, Sukhar, Islamabad, Quetta and Mirpur Azad Kashmir. Of total 792, S. aureus isolates from eight laboratories methicillin resistant S. aureus were 42% and no vancomycin resistant S. aureus was encountered4.

Anwar with his colleagues studied 714 S. aureus isolates from different clinical samples at Lahore from both community and hospital samples. It was observed that community acquired S. aureus were more among hospital samples. Methicillin resistance was high [31.7%] among the hospital strains5.

DISCUSSION

Antimicrobial resistance results in increased morbidity, mortality, and costs of health care. The early and immediate detection of resistant microorganisms will reduce these adverse effects and their attendant costs. The mecA gene, which is responsible for this resistance, is often associated in-vitro with resistance to all Beta-lactams antibiotics. In the present study, mecA gene, by using the PCR based amplification technique was detected in 51.7% of total initially characterized methicillin resistant by oxacillin disc diffusion test.

Ozumba in 2005 studied the resistance of bacteria to antibiotics; particularly those used for first-line therapy and determined the prevalence of antibiotic resistance among common pathogens. Most of the S. aureus and coagulase negative staphylococci were resistant to common anti-staphylococcal drugs3.

In Pakistan, many studies have been conducted on the emergence of antimicrobial resistance in S. aureus. In this part of the review, Hafiz et al. (2002) determined the frequency of MRSA in major cities of Pakistan, Karachi, Peshawar.

CONCLUSION

PCR for mecA gene is an efficient method to detect the methicillin resistance S. aureus and mecA gene is necessary for the resistance in methicillin resistance S. aureus.

REFERENCES: