Ginseng Induced Fetal Skeletal Malformations

SARAH KHALID, MUHAMMAD TAHIR, AMIR ALI SHORO

ABSTRACT:

The use of alternative therapies including Herbal medicines is rapidly escalating in both the developed as well as in the developing countries. It is generally believed that 'natural' herbal medicines are better and safer than conventional medicine; herbal medicines are in fact associated with serious toxic effects. The current study was conducted to evaluate the efficacy and safety of Panax Ginseng; it was found that maternal treatment with Panax Ginseng negatively affected the development of skeletal system; findings in our study suggest that further investigations and monitoring of embryonic effects of ginsenosides on human pregnancy are warranted.

Key words: Skeleton, Sternum, Vertebrae, Panax Ginseng

INTRODUCTION

The use herbal medicine is rapidly escalating in the developed as well as the developing countries; amid the various herbal medicines practiced in the world, Ginseng is one of the commonly used and highly researched herbs. Panax Ginseng is regarded as a tonic with adaptogenic, stimulant and aphrodisiac properties. It enhances phagocytosis, improves physical and mental performance, increases resistance to exogenous stress factors and affects hypoglycemic activity. The recognized primary active components of Ginseng are a group of 30 different triterpene saponins, also referred to as Ginsenosides, which vary in content and relative proportions among different species of Ginseng. Of numerous Ginsenosides that have been identified six (Rb1, Re, Rc, Rd, Rb2 and Rg1) have been chosen for reference standards for Ginseng products. The mechanism by which the Herbal remedy exerts its affects is most likely through Hypothalamic-Hypophysial-Adrenal axis and through immunostimulation.

It is generally believed that 'natural' herbal medicines are better and safer than conventional medicine; herbal medicines are in fact associated with serious toxic effects. Up to 64% of women are reported taking Herbal supplements including Ginseng during their pregnancy. Despite wide spread usage of Ginseng during pregnancy, information concerning the potential effects of Ginseng on the developing fetus in vivo are lacking. Various in vitro studies prove that Ginsenosides exert direct teratogenic effects on rat and mouse embryos and there is a significant variability in embryotoxic effects of different Ginsenosides.

MATERIALS AND METHODS

Thirty albino mice (twenty-four female and six males) 6-8 weeks old were housed in the Research Laboratory of UHS Lahore under controlled conditions. Female mice were left overnight for mating, the pregnancy was confirmed the following morning by the presence of vaginal plug and this was considered as gestational day 0 (zero). Pregnant mice were randomly divided into three groups.

Commercially available Panax Ginseng root powder containing 3% Ginsenosides was obtained from sigma. According to the rule of surface area ratio and an increased metabolic rate observed in albino mice the low dose of Ginseng calculated was 780mg/kg/day, and the high dose of Ginseng calculated was 1560mg/kg/day.

Group 1: 0.1ml of distilled water was given orally throughout pregnancy.

Group 2: 780 mg/kg/day dissolved in 0.1ml of distilled water was given orally throughout pregnancy.

Group 3: 1560 mg/kg/day dissolved in 0.1ml of distilled water was given orally throughout pregnancy.

Skeletal staining: As the protocol for teratological and toxicological studies half of the pups in each litter were examined for skeletal defects; the technique adopted for skeletal staining was Alcian Blue–Alizarin Red Skeletal Staining method.

Statistical analysis: The statistical analysis was carried out using computer software Statistical package for social sciences (SPSS). The difference
was regarded statistically significant if the ‘p’ value was < 0.05.

OBSERVATIONS AND RESULTS

In the control group the skeletal elements were well formed with no apparent deformities seen (Fig. 1).

Mal-union of the sternaebrae was, however, observed in two fetuses, one in each of the treated groups. Both the fetuses had asymmetric bone element of the sternum and the ribs as compared to the control group (Fig. 2).

Defects in the lumber vertebrae were also seen in one fetus of high dose treated group. Mal union of the transverse processes with the vertebral body was noticeably evident; however, no malformation of the vertebral spine was seen (Table 1, Fig. 3).

Table 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Fetuses with skeletal malformations</th>
<th>Fetuses with no skeletal deformities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (52)</td>
<td>00</td>
<td>52*</td>
</tr>
<tr>
<td>Low dose (47)</td>
<td>05</td>
<td>12 **</td>
</tr>
<tr>
<td>High dose (43)</td>
<td>04</td>
<td>12 ***</td>
</tr>
</tbody>
</table>

DISCUSSION

The fetuses in the treated groups showed skeletal malformations; which were pronounced in the high dose treated group as compared to the low dose treated or the control group. The findings in the current project were in accordance with the findings of Ashmaoui et al 2003. They found that 5.4% of the fetuses were negatively affected by Ginseng; the limbs were more involved than the axial skeleton. The involvement of the appendicular skeleton is, however, contradictory to our findings in which axial skeleton deformities were marked.

Ginseng with its structural similarities with the steroids may contain an endocrine-like active substance which can affect neonate development. It is an established fact that bone development and growth is effected by estrogen. Ginsenosides Rb1 can mediate its activities through activation of estrogen receptors – α and β and Ginsenoside Rg1 can mediate its activities through activation of estrogen receptors; the activation of Ginseng saponins is probably the basis of skeletal malformations observed in fetuses in treated groups.

In vitro studies have revealed significant teratogenic and morphologic effects especially after maternal treatment with Panax Ginseng. These findings are in synchronization with our findings in which the gross malformations were pronounced in the high dose treated group as compared to low dose treated or the control group.
In previous studies Panax Ginseng has been used in the treatment of IUGR15, and prevention of the teratogenic effects of hexavalent chromium and hyperthermia16, 17.

The unguarded rise in use of herbal medicines raises a question as to how safe are these preparations for the unborn fetus. Our society has no hindrances in procuring these remedies as these are considered safer and better than most of the conventional or allopathic medicines. If we adopt a causal attitude to the potential embryotoxic affects of ginsenosides, it might induce some kind of severe consequence in humans.

REFERENCES